<u> MATH 170 – CHAPTER 5</u>

5.1 Proving Trig Identities

Need To Know

- Recall basic identities
- Recall strategies for proving
- Practice proofs
- Quiz on identities coming soon

Basics on Identities and Proof

Strategy for Proving Identities

1) _____

 Transform the right side into an expression (A). Next transform the left side into the same (A).

Hints and Tools

a) ____

- b) Look for basic Trigonometric Identities that you can substitute into the expression.
- c) Look for algebra that you can do to simplify (e.g. add fractions, multiply, factor)

Prove

Prove: $(\sin^2 x)(\cot^2 x + 1) = 1$

end

5.2 Sum & Differences Identities

Need To Know

- Recall Even and Odd identities
- Recall Cofunction identities
- Develop proof for sum & diff. identities
- Applications

Identities and Counter Example

$\sin(\theta) = \cos($)
$\cos(\theta) = \sin($)

```
Guess:

cos(A + B) = _____

(check for counter example)
```

Construct Angle Sum Identity

Draw a unit circle, $\angle A$, $\angle A+B$, $\angle -B$

Prove the chord distances are congruent.

Given:

 $\angle \text{IOK} = \angle \text{ JOL}$

Κ

Construct Angle	Sum	Identity
-----------------	-----	----------

So the	distance of IK	=	distance of JL
[cos(A + B	$(-1]^{2} + [sin(A + B) - 0]^{2}$	=	$(\cos A - \cos B)^2 + (\sin A + \sin B)^2$
$\cos^2(A + B)$	$) - 2\cos(A + B) + 1$	=	$\cos^2 A - 2\cos A\cos B + \cos B^2$

 $sin^2(A + B)$ + $sin^2 A + 2sin A sin B + sin B^2$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Application

Find the exact value: $\sin 75^\circ =$

 $\cos \pi/12 =$

end

Need To Know

- Recall angle sum identities
- Develop double angle identities
- Apply

Recall sin(A + B) =

$$\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$$

Application
If
$$\cos A = \frac{2}{\sqrt{7}}$$
 with A in QIV, find $\sin 2A$ and $\sec 2A$

Simplify: $\cos^2 15^\circ - \sin^2 15^\circ =$

$$\sin \frac{\pi}{8} \cos \frac{\pi}{8} =$$

Simplify: $\cos^2 15^\circ - \sin^2 15^\circ =$

$$\sin \frac{\pi}{8} \cos \frac{\pi}{8} =$$

Prove: $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$

end

Need To Know

- Recall Double Angle Identities
- Develop Half Angle Identities
- Apply
 - Exact values
 - Graphs
 - Proof

Recall: $\cos 2x = 2\cos^2 x - 1$

Solve for $\cos x$ and set 2x = A

Choose the + or - based upon which quadrant that the angle A/2 is in.

If sin B = -12/13 with $180^{\circ} \le B \le 270^{\circ}$, find sine, cosine and tangent of B/2.

end

Need To Know

- More Trig Id with Inverse Trig functions
- Product and Addition formulas
- Apply to proof

Product and Sum Formulas

Use the identities in the book to rewrite & simplify $\cos 5x - \cos 3x$

$$\sin\frac{\pi}{12} + \sin\frac{7\pi}{12}$$

end